31st International Conference on Advanced Materials, Nanotechnology and Engineering

  • 09-10 Apr 2025
  • London, United Kingdom

Description

The 31st International Conference on Advanced Materials, Nanotechnology and Engineering focuses on recent advancements in materials science, nanotechnology, and engineering, highlighting sustainable materials, nanomaterials for medical use, and the integration of computer-aided methods in engineering processes.

Topics
  • Carbon Nanostructures and Graphene
  • Spintronics, Optical Materials, and Plasmonics
  • Advanced Materials and Research
  • Science and Technology of Advanced Materials
  • Optoelectronics
  • Nanotechnology & Advanced Materials
  • Structural Engineering and Aerospace Structures
  • Microstructure and Characterisation of Materials
  • Nanoparticle and Nanoscale Research
  • Ceramics, Polymer, and Advanced Fibre Composites
  • Advanced Functional Materials and Nanoscience
  • Biomedical Nanotechnology
  • Fundamentals and Applications of Photonics and Nanostructures Nanosensors and other devices
  • Cluster Science and Nanotoxicology
  • Electronic and Magnetic materials
  • Nanometrology and Instrumentation

Venue

  • London, United Kingdom

More Details

Prices:
699 US Dollar (Estimated)
Exhibition:
No exhibition
Organizer:
Conference Series LLC Ltd
Website:

Future Events

Past Events

Important

Please, check "International Conference on Advanced Materials, Nanotechnology and Engineering" official website for possible changes, before making any traveling arrangements

Event Categories

Technology: Materials, Nanotechnology

Other Events with Similar Categories

Other Events with Similar Location or Organizer

Featured Conferences & Exhibitions

Articles / News / Press releases

Article content. Press on the above link to close

Abstract

Antibiotic is an important risk source of ecology and human health, with low concentration of environment and big health risk. Sulfamethoxazole(SMX) has become one of the most frequently detected antibiotics. Advanced Redox process with strong redox ability, low secondary pollutants and eco-friendly properties have been considered as an efficiency strategy. Aiming to develop renewable-energy-based processes, using natural light triggered chemical reactions are attracting more attentions. Spinel structures with narrow band gap, low cost, controllable performance have made them suitable as catalysts in various reactions. However, high electron-hole recombination rate and low quantum yield often lead to poor reaction efficiency. There are five strategies can be used to enhance their properties, and designing the morphologies and Changing the compositions strategies are considered as more efficient strategies. In order to reduce the residual SMX in water, novel multinary spinel Cu0.5Zn0.5Fe2O4 hollow microspheres with different internal structures (solid, yolk-shell and double-shelled microspheres) were fabricated by a facile self-templated solvothermal and annealing method. The formation mechanism and the relationship between hollow structures with different interior architectures and photocatalytic performance were illustrated based on the analysis of TAS, EPR, PL and DFT. The results showed that when evaluated as the catalytic materials for degradation of SMX, the double-shelled Cu0.5Zn0.5Fe2O4 hollow microspheres show significantly enhanced performance because of its higher surface area, higher charge separation efficiency, more effective light absorption and long radical lifetime. The current research provides new insight into utilizing multinary spinel structures as efficient photocatalysts for the removal of harmful antibiotics in water.